COPERT updates in v5.3

New elements in 2019

- Revision of emission factors for mopeds and motorcycles
- Calculation of the fossil fuel fraction in biodiesel
- Revision of Euro 6d evaporation emission factors
- Revision of Euro 6 LCVs emission factors

Emission factors update: Mopeds & Motorcycles

Test campaigns

- New tests in the framework of the ERMES-ACEM study (2018)
 - Sample: 3 mopeds and 15 motorcycles
 - Technology: Euro 4
 - Lab: JRC, TUG and FHB

- Tests in the framework of the L-category Euro 5 Effect Study (2017)
 - Sample: 41 vehicles
 - Technology: Euro 1 to Euro 4
 - Lab: JRC (mostly) and LAT

Test campaigns cont'd

- Tests on mopeds in the Netherlands (2017)
 - Sample: 15 mopeds
 - Technology: Euro 2 and Euro 3
 - The measurement programme was set up by TNO

- Tested driving cycles:
 - WMTC, ECE R40, ECE R47, WOT, IUC, AMA, SRC-LeCV, FHB1, FHB2, FHB3, FHB4,
 RCC, RDC1, RDC2, RDM

Methods: mopeds

Euro 3

- Based on the data from the TNO study (data from the Euro 5 Effect study have been used only for verification)
- Based on the driving cycle: ECE R47

Euro 4

- Based on the data from the ERMES-ACEM study
- Based on the driving cycles: ECE R47 and RDM

Methods: motorcycles

- Technology: Euro 3 to Euro 5
- Pollutants: CO, VOC, NO_x and energy consumption
- Motorcycle classes: 2-stroke, 4-stroke <250 cc, 4-stroke 250-750 cc, 4-stroke >750 cc
- Calculation steps
 - Step #1: the measurement data have been processed by TUG, providing the emission factors of HBEFA v4.1
 - Step #2: regression analysis: Levenberg-Marquardt (LM) algorithm for non-linear curve-fitting of data, using the robust least absolute residuals (LAR) fitting method

Emission factors

Mopeds:

Euro	Driving Mode	CO [g/km]	VOC [g/km]	NO _x [g/km]	PM (exhaust) [mg/km]	PN [#/km]	CO ₂ [g/km]	FC [l/100km]
Euro 3	Urban	3.9	1.8	0.39	8.4	2.3E+12	41.3	2.3
	Rural	2.0	1.0	0.36	6.5	2.3E+12	44.1	2.1
Euro 4	Urban	2.4	0.5	0.05	2.1	-	46.5	2.2
	Rural	2.0	0.4	0.04	1.5	-	46.4	2.2

Motorcycles:

Calculation of the fossil fuel fraction in biodiesel

Why this update?

- Assessment of biodiesel origin: Identify & separate biogenic and fossil feedstock involved in the production process. E.g. biodiesel from coal methanol with vegetable oil has a non-zero fossil fuel fraction, thus not entirely carbon neutral fuel
- Depending on the production pathway, fossil fuel carbon content is about 5.5%
- Aim: Calculation of fossil fuel carbon content of biodiesel deriving from the most widely used production pathways

Source: https://www.e-education.psu.edu/egee439/node/684

Fossil and biogenic CO₂ emissions to FAME

- Fossil origin g CO₂ / g FAME = (carbon content of FAME) * (fossil part of C of FAME) * 44/12
- Bio origin g CO₂ / g FAME = (carbon content of FAME) * [100% (fossil part of C of FAME)] * 44/12

	C fossil part	Carbon content	g fossil CO ₂ / g FAME	
Sunflower	5.3 %	77.2 %	0.150	
Rapeseed	5.3 %	75.5 %	0.147	
Palm oil	5.5 %	71.8 %	0.145	
Cottonseed	5.4 %	77.0 %	0.152	
Tallow	5.5 %	73.6 %	0.148	
Lard	5.4 %	74.4 %	0.147	

New Euro 6d evaporation emission factors

Why this update?

- Regulation (EU) 2017/1221 introduced a new procedure for evaporative emissions, applicable to Euro 6d-temp and Euro 6d vehicles
- Whereas the emission limit remains at 2.0 g of NMVOC per test, the procedure becomes more severe, specifically targeting the aging of the carbon canister and the permeability of the fuel system

Methodology

- Modelling work carried out in the framework of the "Review of the European test procedure for evaporative emissions | Cost/Benefit analysis" (JRC)
- A number of scenarios developed to assess different policy options
- COPERT model adjusted to simulate the developed scenarios

Scenario 1

More aggressive purging

Scenario 2

- More aggressive purging
- Bigger canister (size x 2)

Scenario 3

- More aggressive purging
- Bigger canister (size x 2)
- Improved durability (lower carbon degradation)
- Multi-layer tanks for all cars

Results

- Stricter procedure in Regulation (EU) 2017/1221:
 - Longer (48 h) diurnal test --> Bigger activated carbon canister
 - Shorter preconditioning time --> More intense purging strategy
 - Stricter aging procedure of the carbon canister --> Low degradation carbon

	Canister size (liters)		Degradation / purging strategy		
		Current (GB 2018)	Suggested (GB 2019)	Current (GB 2018)	Suggested (GB 2019)
Mini & small Passenger Cars	Euro 3 – Euro 6c	0.0	0.8	High door / low purgo rate	High degr. / low purge rate
(petrol only)	Euro 6d-temp / 6d	0.8	1.6	High degr. / low purge rate	Low degr. / high purge rate
Medium Passenger Cars N1-I, N1-II LCVs	Euro 3 – Euro 6c	1.0	1.0	Low door / high purgo rate	Low degr. / high purge rate
(petrol only)	Euro 6d-temp / 6d	1.0	2.0	Low degr. / high purge rate	
Large Passenger Cars N1-III LCVs	Euro 3 – Euro 6c	1.5	1.5	Low door / high purgo rate	Low degr. / high purge rate
(petrol only)	Euro 6d-temp / 6d	1.5	3.0	Low degr. / high purge rate	

Revision of Euro 6 LCVs emission factors

Why this update?

- Previous EFs based on assumed developments over previous standards, in line with passenger cars
- New experimental data has become available

- 3 TNO reports:
 - Investigations and real world emission performance of Euro 6 light-duty vehicles (2013 R11891)
 - NOx emissions of Euro 5 diesel vans test results in the lab and on the road (2016 R10356)
 - NOx emissions of eighteen diesel Light Commercial Vehicles: Results of the Dutch Light-Duty road vehicle emission testing programme 2017 (2017 R11473)

Results (N1 II-III)

Thank you for your attention!